skip to main content


Search for: All records

Creators/Authors contains: "Mukherjee, Shreya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Unrestrained anthropogenic activities have severely disrupted the global natural nitrogen cycle, causing numerous energy and environmental issues. Electrocatalytic nitrogen transformation is a feasible and promising strategy for achieving a sustainable nitrogen economy. Synergistically combining multiple nitrogen reactions can realize efficient renewable energy storage and conversion, restore the global nitrogen balance, and remediate environmental crises. Here, we provide a unique aspect to discuss the intriguing nitrogen electrochemistry by linking three essential nitrogen‐containing compounds (i.e., N2, NH3, and NO3) and integrating four essential electrochemical reactions, i.e., the nitrogen reduction reaction (N2RR), nitrogen oxidation reaction (N2OR), nitrate reduction reaction (NO3RR), and ammonia oxidation reaction (NH3OR). This minireview also summarizes the acquired knowledge of rational catalyst design and underlying reaction mechanisms for these interlinked nitrogen reactions. We further underscore the associated clean energy technologies and a sustainable nitrogen‐based economy.

     
    more » « less
  2. Abstract

    Unrestrained anthropogenic activities have severely disrupted the global natural nitrogen cycle, causing numerous energy and environmental issues. Electrocatalytic nitrogen transformation is a feasible and promising strategy for achieving a sustainable nitrogen economy. Synergistically combining multiple nitrogen reactions can realize efficient renewable energy storage and conversion, restore the global nitrogen balance, and remediate environmental crises. Here, we provide a unique aspect to discuss the intriguing nitrogen electrochemistry by linking three essential nitrogen‐containing compounds (i.e., N2, NH3, and NO3) and integrating four essential electrochemical reactions, i.e., the nitrogen reduction reaction (N2RR), nitrogen oxidation reaction (N2OR), nitrate reduction reaction (NO3RR), and ammonia oxidation reaction (NH3OR). This minireview also summarizes the acquired knowledge of rational catalyst design and underlying reaction mechanisms for these interlinked nitrogen reactions. We further underscore the associated clean energy technologies and a sustainable nitrogen‐based economy.

     
    more » « less
  3. Abstract

    Ammonia (NH3) electrosynthesis gains significant attention as NH3is essentially important for fertilizer production and fuel utilization. However, electrochemical nitrogen reduction reaction (NRR) remains a great challenge because of low activity and poor selectivity. Herein, a new class of atomically dispersed Ni site electrocatalyst is reported, which exhibits the optimal NH3yield of 115 µg cm−2h−1at –0.8 V versus reversible hydrogen electrode (RHE) under neutral conditions. High faradic efficiency of 21 ± 1.9% is achieved at ‐0.2 V versus RHE under alkaline conditions, although the ammonia yield is lower. The Ni sites are stabilized with nitrogen, which is verified by advanced X‐ray absorption spectroscopy and electron microscopy. Density functional theory calculations provide insightful understanding on the possible structure of active sites, relevant reaction pathways, and confirm that the Ni‐N3sites are responsible for the experimentally observed activity and selectivity. Extensive controls strongly suggest that the atomically dispersed NiN3site‐rich catalyst provides more intrinsically active sites than those in N‐doped carbon, instead of possible environmental contamination. This work further indicates that single‐metal site catalysts with optimal nitrogen coordination is very promising for NRR and indeed improves the scaling relationship of transition metals.

     
    more » « less